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SUMMARY

A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic

matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites

ANalyzer). predicts the properties of two-dimensional woven CMC at any temperature and takes into account vari-

ous constituent geometries and w)lume fractions. This computer code is used to predict the thermal and mechanical

properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically

vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The

predictions, based on the bulk constituent properties from the literature, are compared with measured experimental

data. Based on the comparison, improved or calibrated properties Ior the constituent materials are then developed liar

use by material developers/designers. The computer code is then used to predict the properties of a composite with

the same constituents but with different fiber w_lume fractions. The predictions are compared with measured data

and a good agreement is achieved.

INTRODUCTION

The enormous potential that ceramic matrix composites hold for predominantly high temperature structural

applications have led to a multitude of research activities pertaining I.o fabrication, testing, and modeling of these

materials. The efforts directed at the development of ceramic matrix composites have focused primarily on improv-

ing the properties of the constituents as individual phases. It has, however, become increasingly clear that for CMC

to he successfully employed in high temperature applications, research and development efforts should also focus on

optimizing the synergistic performance of the constituent phases within the as-produced microstructure of the com-

plex shaped CMC part. This implies development of a specific fabrication process that allows production of com-

plex parts with minimum technical/cost risk. Furthermore, design/analysis tools thai allow selection and

optimization of the key properties of interest within the physical and chemical constraints of the chosen CMC pro-

cess would be a requirement as well. Most technically viable CMC methods have focused on a generic approach in

which a woven fiber fabric is assembled into a fiber preform of the CMC part which is then infiltrated with the

desired interphase and matrix material. For convenience, this CMC fabrication approach will be called WPI for its

fundamental use of Woven fiber Preform construction and interphase/matrix Infiltration. These processes usually

lead to complex CMC microstructures. Limited thermo-mechanical data on advance SiC/SiC CMC fabricated by

WPI processes have shown good behavior both at low and high temperatures. However, because of their complex

microstructures, very little effort has been initiated in the second important area of mechanistic modeling for design
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and performance optimization of the total WPI CMC system. There is certainly a need for sound engineering data as

well as verified and efficient analytical/design methodologies to evaluate different constituent parameters for use of
these advanced CMC's in structural components with assured reliability. The present paper addresses this specific
issue.

The need to analyze woven composites has been addressed by many researchers (refs. I to 7). A review of vari-

ous approaches can be found in reference 2. Reference 1 addresses an approach based on micromechanics lbr plain

weave composites consisting of fiber, matrix and coating or interphase as three distinct constituents. An approach

based on classical laminate theory to predict the laminate level properties is presented in reference 3. It should be

noted that in such approaches, details regarding local response within fiber tows, interphasc and matrix rich areas are

lost due to the smearing involved in considering the ply level properties as a starting point. Numerical methods
based on three-dimensional finite element formulations overcome such difficulties and do address the local detailed

response. However, because of the complex microstructure, model generation itself can be quite time consuming in

the case of three-dimensional finite element analyses. For this reason, such analysis techniques are not practical for

routine trade-off studies for optimizing the constituent geometries or volume fractions to obtain a desired response

characteristic (ref. 4). Others have addressed the computational aspects by adopting a judicious combination of

micromcchanics and three-dimensional finite element formulations that overcome the above shortcomings to some

extent (ref. 7). However, they have not addressed the issue of multiple constituent phases typically present in an

advanced WPI CMC. In summary, a completely micromechanics based |ormulation accounting lor the various con-

stituent phases specific to advanced woven CMC's that are being considered |or some of the high temperaturc

engine applications is currently not available. Development of such an approach is desirable as it provides an effi-

cient tool to quickly analyze woven CMC's made of different fiber architectures as well as multiple constituents.

They also enable the designer to account tbr constituent level material nonlinearity, environmental effects, and con-

stituent geometry.

The authors have developed a micromechanics based technique to predict the properties of advanced WPI

ceramic matrix composites. Details regarding that technique were presented earlier (ref. 8). The properties of a five-

harness SiC/SiC composite at various temperatures were predicted. This composite was made of 0/90 Sylramic
weave with boron nitride interracial coating and multiple matrix phases, using a manufacturing process described in

the next section. However, the constituent properties at elevated temperature are not readily available. The constitu-

ents properties used were based on the best initial estimates and judgement along with properties available in the

literature and any measured data obtained from the HSR (High-Speed Research) program of NASA. It was realized

that there were somc issues regarding the constituent properties and the confidence that can be put in these proper-

ties, particularly those of BN coating and MI (melt-infiltrated) silicon carbide matrix material. When the predictions
were compared with the measured data obtained from the HSR program, the comparison was reasonable for some

properties and poor tbr certain other properties. It was decided that a calibrated set of constituent properties needs to

be established by comparing the predictions with the measured data. The material developers/design engineers will

be able to use this calibrated set of properties to carry out trade-off studies to optimize key composite properties and

generate a set of properties needed by the design engineers, difficult to measure experimentally.

The objective of the present work is to develop a set of calibrated constituent properties that can bc used for

WP1 SiC/SiC composites based on BN interphase and M1 SiC material. The first section briefly describes the WPI

process and the following section describes computer code that incorporates the technique developed by the authors

previously to analyze the WPI composites. It makes use of the capabilities of the CEMCAN (Ceramic Matrix Com-

posite Analyzer) developed previously by the authors (refs. 9 and 10). An overall schematic of the approach embed-

ded in CEMCAN computer code is shown in figure 1. The properties of an advanced SiC/SiC composite with a

five-harness satin weave are then predicted and compared with measured data. Based on this comparison, a set of

calibrated constituent properties was created as a function of temperature. This set of constituent properties was then
used to predict the properties of a composite with a different volume fraction. The capabilities and potential uses of

such an analytical tool are then briefly outlined.

WPI PROCESSES AND CONSTITUENT GEOMETRIES

In general, the objective of the WPI fabrication approach is to pr¢ntuce complex-shape CMC components with
processes that will allow ( I ) full retention of the as-produced fiber strength, (2) fiber architectures with high fiber

volume fractions in the principal stress directions, (3) fiber interfacial coatings with uniform thickness and desirable
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interactionwiththematrixphase,and(4)matrixphasesthatinhibitfiberandcoatingattackbythe component envi-

ronment while providing other important CMC properties such as high thermal conductivity and interlaminar

strength.

Typically in the WP1 approach, a three-dimensional fiber preform is formed by weaving continuous-length fiber

tows in a desirable three-dimensional pattern or architecture or by stacking two-dimensional woven fiber fabric into

multiple layers or plies. For this study, only two-dimensional fiber architecture will be considered. In the case of

two-dimensional woven fabric composites, two mutually orthogonal sets of yarns of the same material (nonhybrid)

or different material (hybrid) are interlaced with each otber. Various types of weaves can be formed depending upon

how the pattern in the interlaced region is repeated. Plain weave, 5-harness and 8-harness satin weaves are some of

the variations of two-dimensional orthogonal weaves. For example, in the case of 5-harness satin weave, a "warp +`or

longitudinal fiber tow is interlaced with every fifth "fill" or width fiber tow. A typical cross-section of the repeating

unit cell is shown in figure 2(a). If one takes a section where the fiber tow is straight, the construction is like a 10/90]

laminate. There are wavy portions of the fiber tow and there are matrix rich areas whose volume fraction dcpend

upon the geometry and can be a substantial fraction of the overall w)lume. The fiber tow or fiber yarn is usually

composed of several hundred or even thousands of filaments. Fiber tow cross-sectional dimensions, in the as-

fabricated composites, depend upon the fiber type as well as the weaving conditions. Another important parameter is

ends per inch (epi), i.e., the number of fiber tows in a linear inch. The epi with the ply height determines the overall

fiber volume fraction in the composite.

Once the fiber perform is made, an interfacial coating is deposited on all the fiber surfaces typically by a chemi-

cal vapor infiltration (CVI) process. The w_lumc fraction of this interfacial coating is determined from the weight

gain of the fiber prelbrm. Following this, the component is infiltrated with matrix constituents, usually by gas, slurry

or liquid processes or a combination these processes. Ideally+ the matrix phase first fills up the area within the tow

(intratow) and then forms a thin coating around the fiber tow. The intcrtow region can then bc filled by using the

same or different infiltration processes. Again, the w)lume fraction of the different matrix phases is estimated by

measured weight gains and knowing the densities of those phases. There is+ generally, a small residual porosity both

in the intratow and intertow regions. Eflorts are underway to minimize the porosity in both areas since it is known

that porosity reduces CMC pertbrmance. Many advanced CMC's are employing a final high temperature matrix

infiltration step in which a matrix precursor is added in liquid or molten stage. This step known as melt infiltration

(MI) typically results in very low porosity composites.

WOVEN COMPOSITE MODELING: W-CEMCAN COMPUTER CODE

The computer code W-CEMCAN (Ceramic Matrix Composite Analyzer for Woven Ceramic Matrix Compos-

ites) is an out growth of CEMCAN (ref. 10), which was originally developed for continuous filament reinforced
laminated ceramic matrix composites. The code i_ based upon micromechanics and employs a unique fiber

sub-structuring concept. This c_e was further enhanced to analyze composite materials consisting of stacked two-

dimensional woven fabric. Application of the plain weave composite code to graphite/epoxy and SiC/SiC compos-

ites is presented in reference I. The approach used is quite generic and in fac! can be applied to any type of satin
weave architecture. The present research effort focuses on automating the process so that a user can routinely ana-

lyze different woven architectures with minimal input. Table I provides details of the input needed by the code and a

summary of resulting output.

The modeling details will be explained briefly in this report with respect io a 5-harness satin weave. Figure 2(a)
shows a cross section of the unit cell of a 5 HS weave and 2(b) shows a vertical slice taken from thc cross section

showing details of different constituents namely, the 0° fibers, 90 ° fibers and matrix rich area. The geometry of

these regions depends upon the particular weave architecture. Also shown arc the details of a typical unit cell from
the interior of fiber tow with three distinct constituents: fiber, matrix, and BN coating (interphase). For modeling

purposes, the parts where the fiber tow is straight, the construction is assumed to be like a [0/90] laminate. In other

parts, where the fiber tow is wavy or has a "crimp," the undulated shape of the fiber tow is assumed to be same as

was assumed before by the authors (ref. 1 ). It matches closely with the geometry observed in photomicrographs.
Furthermore, it is assumed here that laminate theory is applicable at each section of the model along the x-axis. One

such section is shown in figure 2(b). For a slice in the straight region, the equivalent properties of the slice can bc

obtained by running a [0/90] laminate analysis. For slices where the fiber is undulated, the following technique is

uscd-a typical slick in the undulated region looks like the one shown in figure 2(b). In general, it will have four
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regions-0° fiberregion,90° warpfiberregion,athinlayerof matrixphasearoundthefibertowregionandamatrix
richarea.Theoff-axisangleofthewarpyarninanysliceisknownbecauseoftheassumedgeometricalshapeof the

warp yarn. In-plane stiffness of this particular slice can be obtained using a laminate analysis of a [90/0/0] laminate.

From these one can obtain the longitudinal modulus at this section Exx. The 90 "ply" in this "laminate" represents a
fill yarn, 0 "'ply" represents the warp yarn and the 0 "ply" represents the matrix rich area. The thickness of each

"ply" is properly accounted for depending upon the location of a particular slice in the section. Equivalent through-

the-thickness modulus Ezz can be obtained as the Eyy of the [0/e/0] laminate. In a regular laminate analysis, the ply
is oriented in the X-Y plane. In this situation, the 0 ° fiber low has an inclination in X-Z plane. To account for that

properly, the existing laminate analysis codes have to be used judiciously taking into account proper orientations.

Once the equivalent properties of a vertical slice are established, the procedure is repeated for all other slices

along the length of the representative volume element. In the next step these slices are stacked up as plies in a lami-

nate and CEMCAN's laminate analysis capability is once again utilized to arrive at equivalent properties for the

section shown in figure 2(a). This now represents equivalent properties of a 5-harness [0/90] woven CMC material.

The details of this technique are provided in reference I. The process is equally applicable to a N-harness [0/90]

woven CMC in general. The number of vertical slices is a user input parameter and in the present study 40 vertical

slices are used which was arrived at after performing several sample runs to test convergence of properties. Since

this technique is based on micromechanics, it is computationally more efficient compared to a full three-dimensional
finite element analysis approach. Any level of detail can be modeled routinely. The incorporation of processing.

effects of wilds and environmental degradation etc.. can be easily incorporated in the analysis as well.

RESULTS/DISCUSSION

In order to illustrate the capabilities of W-CEMCAN computer code, a specific CMC system made of Sylramic

(SiC fiber) 0/90 5-harness woven preform coated with BN and CVI-SiC and subsequently melt infiltrated with SiC

matrix was chosen. This material system has been fabricated and tested under the NASA EPM (Enabling Propulsion

Materials) program as a part of the HSR (High-Speed Research) initiative at NASA. Two specific 5-harness satin

weave composite systems; one with 18 and one with 22 epi fiber tow spacing were fabricated and tested (ref. 12).

The experimental data from the 22 epi material was utilized to calibrate constituent properties, necessary to run

W-CEMCAN as well as to predict composite mechanical and thermal properties of 18 epi material. The calibration

of constituent properties was necessary due to the fact that the in-situ and the bulk properties often differ and many

times bulk properties, as a function of temperature, are simply not available. In the present approach the following

procedure is followed. The constituent properties arc obtained from literature, handbooks or from measured data

under NASA's EPM program and are used as such to predict the overall composite properties. Some of these prop-

erties are calibrated using the experimental data lor 22 epi CMC. With the calibrated constituent properties, the

18 epi CMC properties are predicted and compared with experimental results.

The fiber tow is made of Sylramic fibers with a tow count of 800. For 22 epi CMC, microstructural observa-

tions indicate an average tow height of 115 p+m (4.5 mils), and an average tow width of 985 _m (38.5 mils). The
cross-sectional shape of the fiber tow is approximated as an elongated ellipse, which results from the fiber weaving

process and the compression process during preform lay-up. The tow-width (A) depends upon fiber tow count (N)

and fiber diameter (d). From figure 2(a), the unit cell width (X') depends only on the epi by the relation X' = l/epi.

The intcrtow spacing B is simply given by B = X' - A.

The laminate preform contains 8 plies of 5 HS fabric in 0/90 architecture. Each ply has a 0/90 woven preform

and has a nominal thickness of 254 lain ( 10 mils) for a total average observed laminate thickness of 2032 lam

(80 mils). Fiber preforms are coated with boron nitride (BN) using a CVI process, followed by a thin coating of SiC

material again using a CVI process. The CVI-SiC material goes inside the fiber tow region, depending upon the BN

volume fraction and also forms a thin coating around the fiber tow region. The rest of the laminate is then filled with

a SiC matrix using a melt infiltration (MI) process. The overall fiber volume ratio is -42 percent for 22 epi compos-

ite and thc void volume fraction is -7 percent, while the fiber volume ratio is -34 percent and void volume ration is

-4 percent for the 18 epi material. The fiber volume ratio in the fiber tow itself is generally much higher than the

overall fiber volume ratio because of denser packing within the tow.

The initial constituent material properties based on literature properties of the constituents in the bulk form were

obtained from reference 13 and are shown in table II. The numbers within the parentheses are the calibrated con-

stituent properties using the experimental results for the 22 epi compositc system. Table III shows the average

volume fractions obtained from corresponding weight gains of different constituents or obtained from the photo
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micrographsforboth18(F-34for34percentfibervolumefraction)and22epi(F-42tk)r42percentfibervolume
fraction)CMCmaterialswhosethermalandmechanicalpropertieshavebeenmeasured.Thevariationofconstituent
propertiesduetotemperatureismodeledthroughthefollowingfunctionalrelationship(ref.9):

(I)

where P is the constituent property at temperature T, and Pc, is the reference property at the reference temperature

T o, usually the room temperature. T t, is the final temperature where the property is nearly zero and n is an exponent.
Based on the constituent properties data provided in table I as a function of temperature, the T t-and n were computed
for each of the constituent.

5-Harness 22 Ends/Inch Weave

The predictions based on estimated constituent properties, experimental data as well as predictions based on

calibrated constituent properties are shown in figures 3 to 7. The in-plane tensile modulus predictions are compared

to experimental data in figure 3 at various temperatures. The predictions based on original constituent properties

show higher m_xluli and steeper degradation compared to the experimentally observed behavior. It should be noted

that the BN moduli, based upon the values reported in the literature (ref. 11 ) shows a steep degradation (table l).
Since the interface conditions are generally not precisely known, it was decided to calibrate this property using the

average measured value of in-plane tensile unodulus. Accordingly, BN modulus was calibrated and is shown within

the parenthesis in table I. The predicted in-plane modulus with the calibrated properties is shown with a dashed line

in figure 3 as well. With the aid of these calibrated properties for the constituents as well as the original constituent

properties, the through-the-thickness modulus is predicted and compared with values that are 80 percent of the cor-

responding in-plane value at that temperature, a practice commonly used by design engineers, and shown in figure 4.

The predictions show a much steeper degradation of the property due to temperature than the assumed values of the

MI CMC. This assumption of a flat 80 percent reduction of the longitudinal modulus may not provide a conservative

estimate of the through-the-thickness modulus. One certainly needs to correlate this with data or infer through-the-
thickness modulus with a related experimental result. A micromechanics based analysis tool thai predicts a consis-

tent set of properties tk)r design/analysis components made of these materials is useful.

The predictions for the thermal conductivities along with the experimental data are shown figures 5 to 6. The

predicted values based on the original constituent properties for in-plane as well as through the thickness thermal
conductivities are much higher than the measured values, especially at room temperature. The thermal conductivity

of MI matrix is adjusted accordingly to produce a closer match the room temperature predictions and the measured

data. The original conductivity value of MI matrix appears to be too high. Due to the thermal expansion coefficient

mismatch between free silicon and the surrounding medium, fine gaps could fk_rm in the MI matrix such that its

in-silu thermal conductivity could be considerably lower than the bulk values. Therefore, it was decided to calibrate

this property based on the measured data. The calibrated predictions shown by the dashed curve in figures 5 to 6

agree closely with the measured data.
The experimental and predicted values of coefficients of thermal expansion as a function of temperature are

shown in figure 7. The predictions agree well with measured data after calibration of constituent thermal expansion
coefficient values. It should be noted that the expansion coefficients for CVI-SiC and Sylramic fiber are assumed to

be the same and the MI matrix expansion coefficient is different. Both needed to be adiusted in order to achieve

agreement with the measure data as indicated in table I. The computer ccxle also predicts shear moduli and Poisson's
ratio as functions of use temperature. These are not explicitly shown, as the constituent properly data as a function

of temperature is not readily available. It should be noted that a consistent set of all the properties are required to

perform design/analysis and the present code provides such properties, some of which are difficult to measure.

5-Harness 18 Ends/Inch Weave

With the aid of the calibrated constituent properties, a similar set of results is generated for 18-epi 5-harness

satin woven composite properties. These are shown in figures 8 to 12. The selected constituent w_lume ratios.
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computedfromtheweightgainsarealsoshownintableII andidentifiedasconstituentsF-34(for34percentfiber
volumetraction).Theagreementbetweenthepredictionsusingthecalibratedconstituentpropertiesandthemea-
sureddataisexcellent.Thetrendsshownforthevariouspropertiesaresimilartothosefor5-harness22-episatin
weavecomposite.Theresultsshowthatchangesin thetowcountandthus,thefibervolumefractioneffectthe
compositethermalconductivitiesandmodulionlyslightly.Ithasveryminimaleffectonthecompositethermal
expansioncoefficients.TheresultsconfirmthatthecomputercodeisabletopredictthebehaviorofwovenCMC.
Foranymaterialsystem,oneneedstocalibratethematerialpropertiesoftheconstituentsusingsimilarprocedures
describedabove.

CONCLUSIONS

A micromechanicsbasedcomputerccKleW-CEMCANwasutilizedtopredictthethermalandmechanicalprop-
ertiesasafunctionoftemperatureofa5-harnesssatinweaveCMCmaterial.ThematerialiscomposedofSylramic
fiberwithCVI-BNandCVI-SiC coatings and MI-SiC matrix. Two different materials, one with a count of 22 epi
and one with 18 epi, were considered for this work, as measured data are available for these materials. The measured

data for 22 epi CMC were utilized to calibrate some of the in-situ constituent properties. Once calibrated, the same

properties were used to predict the properties of 18 epi CMC material. The predictions of the c_xte are lound to be

very good when compared with the available test data. Some general observations can be made:

I. The computer code provides an excellent tool fi_r trade-off studies that will allow the optimization of a key

composite property, calibration of in-situ constituent properties through back calculations and generation of a com-

plete and consistent set of properties tor design/analysis studies. It is important to note that many of the properties

needed for analysis are often difficult to establish through measurements and usually only a handful of properties
can be measured and are available to analyst.

2. Through-the-thickness modulus and conductivity are anywhere from 50 to 80 percent of the corresponding

in-plane value at that temperature. Assumption of a fiat reduction of 20 percent throughout the range of temperature
for the through-the-thickness modulus and conductivity for design data there|ore could lead to nonconservative esti-

mates. These properties should be inferred from a test to validate the predictions.

3. Increasing the tow count from 18 to 22, i.e., increasing the overall fiber volume ratio from 35 to 42 percent

or equivalently decreasing the fiber tow spacing, decreases the composite thermal conductivities and moduli only

slightly. It has practically no effect on the composite thermal expansion coefficient at all temperatures.
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TABLE I,--W-CEMCAN INPUT-OUTPUT

Input

Ends pet inch, epi
Filament count in fiber tows

Ply thickness
Constituent properties (fiber. nlatrix, coating.

secondary man-ix l-Resident databank

Coatine thickness
Volume fractions <tiber, voids)

Nt, mber of plies

Use temperature
Weave paramete. 12,5.8 etc.

Output
Conlposite lllcchanica] propeFlles-normal and shear

nioduli, Poisson's ratios

Composite thermal properlies-thermal conduciivities.

expansion coefficients, heat capacity etc.
Conlposite three-dimensional slress/sffain relations

Malerial propellies lbr FE analysis
Force/displacenienl relations for the composite

TABLE II._ONSTITUENT PROPERTIES

I 20°c I 6_1°c I v'_._°c
S,vlramic fiber

Density. gill]CO 3. I ........
Modulus, GPa :f80 368 356

Poisson's ratio [1.17 .........

Thermal conductivity, W/m-K 43,(I 34.5 20.4
Coefficient of thermal 2.62 12.2) 4.8 (4.0) 6.(1_4.6i

expansion, 10 <7C
CVI-SiC matrix

Density. gnl]cc 3.2 ..........
Modulus. GPa 425 _413 4(11

Poisson's ratio (1.17 ......

i Thennal conductivity, W/m-K 65 46 27
Coefficient of thermal 2.62 (2.2t 4.8 (4.01 6.0 (4.6)

expansion. I0 "/C
MI-SiC matrix (a lwo-phase material, -50 percent SiC "mniculate

and -50 percent silicon)

I)ensiiy, gin/co 2.86 .......
Modulus, GPa 345 333 321
Poisson*s ratio 0.17 ........

Thermal conductivil,,. W/m-K 120 (70J 49,3 (49) 29.213()l
C_vcfficient of thermal 2.7 (2.3i 4.9 (4. I ) 6.2 (4,7)

expansion, I0 "/C
CVI-BN coalin_

Density. gndcc 1.4 ........
Modulus, GPa 62 '29 141 ) "7 I 18 )

Poisson's ratio (1.17 .......

Thernlal conductivity, W/m-K 6.9 ;'5.2 '3.5
Coefficient of themlal 6.3 "5.2 '3.7

exparisitm, 10 +'/C
'Estimated.

Note: The IlUlllbers in parentheses show calibrated properties.
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TABLEIII.--CMCCONSTITUENTVOLUMERATIOS

[800 count fiber tt)w: fiber density/, 3.1 _m/cc; fiber diameter = 9.4 lain
Constituent Total volume lraction

22-epi; 5-HS composite 18-epi; 5-H/S composite
Constituents: F-42, Constituents: F-34,

percent percent
Fiber (Sylramic) 42 34.5

CV I-BN coating 17 13.6
Porosity 7 4
CVI-SiC :' 21 25.6

MI-SiC _ 13 22.3

"Includes any CVI-SiC inside the fiber-tow re .,ion as well as a layer of
CVI-SiC around fiber tow.

_lncludes both SiC particulate and free silicon, treated as one material in
this work.

Laminate Laminate

Step 3

[_ Loads [_
Step 4

Material

property,

P0 A6 _x,.___ /
p 6

_-----------_A_ ro /--1

Unit cell 1 t Unit cell

s'e°' I j ,,'
Slice

Figure 1 .Blntegrated analysis approach embedded in CEMCAN computer code.
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_%.; , (fill) --,

/_,,/L_,,_',',,_-_',_%_,_,_,___;_,_.,,,_'-_. - . . ..... . - . - I

I I \

, _ \-- 0 ° fiber tow

/-_ ' _ X' = 45.5 mils (22epi),

I---x'= A+B(epi)-II--_-- X' __-_---_l"_X'/2---_ ht = 5 mils
I

90 ° fiber "_;

tow _ O O (_Q)

"000 O/

000_,'

Matrix rich
area --_.

.,=------ W _

(b)

".. I _ Fiber
%' 'l,_ / #

CVI-SiC + porosity _

Figure 2.--Woven composite analysis modeling details.
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Figure 3.--In-plane tensile modulus. Constituents: F-42.
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Figure 4.mThrough-the thickness tensile modulus.
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Figure 5.rain-plane thermal conductivity. Constituents: F-42.
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Figure 6.--Through the thickness thermal conductivity. Constituents: F-42o

5

¢P

o-

Constituents: F-42

..... 4--m

_..**_...-tlr _ Prediction

f • Dat=

- EP- Calibrated

l l i l I l l I i I i l l l

0 500 1000

Temperature,C

1500

Figure 7.--Coefficient of thermal expansion. Constituents: F-42.
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Figure 8.rain-plane tensile modulus. Constituents: F-34.
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Figure 9.--Through the thickness tensile modulus. Constituents: F-34.
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Figure lO.--In-plane thermal conductivity. Constituents: F-34.
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Figure 11 .---Through the thickness thermal conductivity.
Constituents: F-34.
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2 • Data
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Figure 12.--Coefficient of thermal expansion coefficient. ConsUtuents: F-34.
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